指導教員 庄建治朗 助教

1. はじめに 都市化による浸透能の低下と併せ,近 年局所的な集中豪雨が多発していることで,都市部の 中小河川流域において度々水害が発生している.都市 化による水害を防止する洪水調節としての役割を果 たすとの観点から,昔農業用につくられたため池が見 直されてきている.河川への流出解析や洪水調節効果 の検討を行う上で調節池の流量特性を把握すること は重要である.

以上の背景の下,本研究では対象とする調節池の堰 にて流速計測を行うことで越流水深と流出量の関係 式を作成するとともに,それをもとに調節池への流入 量の算定を行った.そして,対象調節池における流量 特性の把握を試みた.

2. 現地観測 現地観測は名古屋市緑区を流れる扇川 流域内に位置する神沢池・要池・大池を対象とし、複 数回行った. 観測結果をそれぞれ表-1,2,3に示す. 神沢池においては電磁流速計(株式会社ケネック製 本体・VP3000, 検出器・VPT3-200-13P)を用いて流 速を計測することができたが,要池と大池においては 堰の位置や出水の状況により流速計での計測が危険 もしくは不可能と判断したため, 浮子計測にて表面流 速を計測した. そこで、断面平均流速の算定には流速 の計測方法に合わせて, 流速計による計測の場合には 3点法を, 浮子による計測の場合には浮子更正係数を 用いることとした.ただし、浮子更正係数については、 政府機関等が定める規定が幅の広い河川を対象とし たものしか存在していないため、ボール浮子を用いた 農業用水路における2つの実験の結果^{1),2)}より導いた 浮子更正係数 λ に関する関係式(1)をもとに定めるも のとした.

$$\lambda = 0.0023 (B/_{H})^{2} - 0.0643 (B/_{H}) + 1.0456 \quad (1)$$

ただし、B: 水路幅(m)、H: 水深(m)であり適用範囲 は $1 \leq B/H \leq 7$ である.適用範囲を外れた大池のデー タに関しては全て $\lambda = 0.70$ とした.以上により求めた 断面平均流速に通水断面を乗じて流量を算定した.

3. H-Q曲線式の作成 各堰は水深が浅い場合は矩形 単断面であるが,深くなると神沢池と要池は幅が広が り複断面となり,大池はオリフィスになるような構造 をしている.今年度の降雨の関係上,各調節池の堰の 断面が変化するほどの水深にて観測を行うことが出 来なかった.そこで,堰が矩形単断面となる水深の範 囲に関してのみ現地観測の結果をもとに最小二乗法 を用いてH-Q曲線式を作成した.断面変化する水深 の範囲に関しては神沢池の場合,汎用3次元熱流体解

図-1 対象流域図

表-1 神沢池での観測結果

データ	$V_{0.2}(m/s)$			$V_{0.6}(m/s)$			$V_{0.8}(m/s)$			$V_m(m/s)$		
	1	2	3	1	2	3	1	2	3	1	2	3
1	-	-	-	0.278	0.349	0.317	-	-	-	0.278	0.349	0.317
2	0.399	0.434	0.407	0.428	0.433	0.428	0.321	0.433	0.359	0.394	0.433	0.406
3	0.413	0.442	0.397	0.403	0.469	0.416	0.374	0.398	0.367	0.398	0.445	0.399
4	0.396	0.430	0.395	0.409	0.455	0.405	0.332	0.369	0.377	0.386	0.427	0.395
5	0.407	0.423	0.401	0.421	0.442	0.413	0.388	0.383	0.374	0.409	0.422	0.400
6	0.923	0.979	0.758	1.006	1.038	0.894	0.839	0.972	0.790	0.943	1.006	0.834
7	0.747	0.847	0.712	0.671	0.862	0.813	0.685	0.770	0.711	0.693	0.835	0.762
	水位H(m)			各水面幅	水面幅 断面積A(m²)			流量Q(m ³ /s)			Q(m ³ /s)	H(m)
7-9	1	2	3	B(m)	1	2	3	1	2	3	(全)	(全)
1	0.070	0.082	0.074	0.12	0.008	0.010	0.009	0.002	0.003	0.003	0.009	0.075
2	0.107	0.110	0.101	0.12	0.013	0.013	0.012	0.005	0.006	0.005	0.016	0.106
3	0.103	0.108	0.107	0.12	0.012	0.013	0.013	0.005	0.006	0.005	0.016	0.106
4	0.104	0.111	0.110	0.12	0.012	0.013	0.013	0.005	0.006	0.005	0.016	0.108
5	0.100	0.104	0.102	0.12	0.012	0.012	0.012	0.005	0.005	0.005	0.015	0.102
6	0.357	0.359	0.355	0.12	0.043	0.043	0.043	0.040	0.043	0.036	0.119	0.357
7							0.004	0.004	0.000	0.000		

表-2 要池での観測結果

データ	流下距離	通過時間	表面流速	水面幅	水位 日本		更正係数	更正係数
	L(m)	T(s)	$V_s(m/s)$ B(m)		H(m)	D/ TI	λ	λ'
1	3.000	2.663	1.131	1.000	0.240	4.167	0.818	0.82
2	3.000	2.756	1.092	1.000	0.150	6.667	0.719	0.72
3	3.000	1.389	2.174	1.000	0.395	2.532	0.898	0.90
4	3.000	0.890	3.405	1.000	0.695	1.439	0.958	0.96
5	3.000	1.319	2.287	1.000	0.531	1.885	0.933	0.93
= n	断面平均流速		断面積	流量	風速	同内主		
7-9	$V_m (m/s)$		A(m²)	Q(m³/s)	(m/s)	風回さ		
1	0.928		0.240	0.223	8.9	西北西		
2	0.786		0.150	0.118	2.8	東南東		
3	1.956		0.395	0.773	8.2	南南東		
4	3.269		0.695	2.272	9.6	南南東		
5	2.127		0.531	1.128	4.2	西北西		

表-3 大池での観測結果

=	流下距離 通過時間 L(m) T(s)		表面流速	惠 水面幅 水位		D /11	更正係数	更正係数
7-9			$V_s(m/s)$ B(m) H(m)		H(m)	Б/П	λ	λ'
1	2.960	3.991	0.745	1.200	0.030	(40.000)	2.154	0.70
2	2.960	3.540	0.837	1.200	0.060	(20.000)	0.680	0.70
3	2.960	2.312	1.285	1.200	0.190	6.316	0.731	0.73
4	2.960	1.444	2.061	1.200	0.530	2.264	0.912	0.91
	断面平均流速		断面積	流量	風速	Rot		
テータ	$V_m (m/s)$		A(m²)	Q(m³/s)	(m/s)	風向さ		
1	0.521		0.036	0.019	9.5	北西		
2	0.586		0.072	0.042	2.4	東南東		
3	0.938		0.228	0.214	7.0	南東		
4	1.875		0.636	1.193	9.3	南南東		

析ソフトウェア FLOW-3D によるシミュレーション 結果を代用することで対応した.一方,要池と大池の

秋田燎汰

場合,理論式³⁾やオリフィスの流量公式の算定結果を 代用することで対応した.なお,シミュレーションの 結果を用いた場合も理論値の算定結果を用いた場合 も境界条件を与えることで補正を行っている.図-2 に作成したH-Q曲線を示す.

シミュレーションの結果と現地観測の結果が概ね 一致した神沢池や、矩形単断面の水深範囲に対する刃 形四角堰の理論値 4と観測値の結果が概ね一致した 大池に関しては、高精度の観測が行えたものと考えら れる.一方、要池に関してはシミュレーションの結果 と刃形四角堰の理論値がともに観測値より小さい結 果を示したこと、理論式の適用範囲を越えて外挿をし ていることから今後再検討する必要がある.

4. 流入量の算定結果 基礎式として式(2)を用いた.

$$\frac{dV}{dt} = A \frac{dH}{dt} = Q_{in} - Q_{out} \tag{2}$$

ただし、V:貯留量(m³), A:池面積(m²), t:時間(s), H:水深(m), Q_{in}:流入量(m³/s), Q_{out}:流出量(m³/s) である.なお,式(2)は微分方程式であるためルンゲ・ クッタ法による差分近似にて対応した.また,本研究 の性質上式(2)を名古屋市に提供して頂いた水深デー タから流入量を算定するような陰公式として扱うた め、これに関してはニュートン法による予測子・修正 子法を採用することで対応した.また,Q_{out}に関して はそれぞれの堰にて作成した H-Q 曲線式を代入し て、対象とした降雨データに対応する水深データを用 いるものとする.なお、降雨データは X バンド MP レーダのデータを用いている.また,対象事例は 2011 年2月末から 2013 年 10 月末の期間内である程度まと まった量の雨が降った事例を 14 個選定した.

対象とした降雨に対応する水深データに対して流入量の算定を行い、ハイドログラフをハイエトグラフとともにそれぞれ作成した.各調節池での事例を図-3、4、5にそれぞれ示す.各事例に対するグラフから、 全ての池においてピークカット量は多くても 500m³ 前後であり、立ち上がりからピークを迎えるまでの間 に神沢池と要池では 1000~10000m³ 程度,大池では 500~3000m³ 程度貯留されていることが分かる.また、 降雨と流入量のピーク時間差は大池が最も短く 10 分 前後であり、神沢池と要池は最大で数時間程度となる こともあると分かる.

5. おわりに 名古屋市緑区を流れる扇川流域に位置 する調節池を対象として, H-Q曲線を作成し流量特 性を把握することができた. なお, 要池に関しては多 少 H-Q 曲線式を過大評価してしまっているという 不安が残る結果となったため, 今後追加の検討が必要 になることも考えられる. また, 本研究を土台として 河川への流出解析や調節池の洪水調節効果について 更なる研究がもたらされることを期待する.

<u>参考文献</u>

- 鈴木弘:ボール浮子による流量観測について(予報), 農業土木研究,第26巻第7号,pp.386-388,1958
- 2) 鈴木弘:ボール浮子の実験的考察,農業土木研究,第 27巻第7号, pp. 453-456, 1959
- 標準型越流頂の自由越流量:岩崎の式,水理公式集, 昭和 60 年版, pp.289-291
- 3) 刃型四角堰の越流量:板谷・手島の式,水理公式集, 昭和 60 年版, pp.283-284