ら上流に向かって西日置橋

(St.5) まで移動し,計測を実

施した. 水面から 0.5m 間隔で

水温, Chl.a を計測した. ただ

し、夏季は水質計の不調により、

いろは橋での水質観測は実施

3-1. 定点観測結果から見た冬

季の DO の変化特性 図-2 に

2014年12月8日~12月22日

に東支線西日置橋にて実施し

た DO の定点観測結果を示す.

表層(水面から 0.5m)の DO

濃度は観測期間を通じて 6~

20mg/L であり、降雨の多かっ

た観測期間の後半では, 過飽和

である場合が認められる. 中層

(水面から 1.5m)の DO は,

していない.

3. 観測結果と考察

鉛直方向に pH, DO, 塩分,

## 指導教員 冨永晃宏 教授

1. はじめに 中川運河は名古屋港側の中川口閘門と堀川 との接合部に位置する松重閘門により区切られた総延長 8.2kmの運河であり、かつては名古屋港と市街中心部を 結ぶ物流の軸として中部の産業発展に貢献してきた.し かしながら,現在の中川運河は,閉鎖性に伴う水質悪化 が問題となっており,主な要因として1)富栄養化によ る植物プランクトンの内部生産,2)密度成層による底層 の貧酸素化が挙げられている.そこで,本研究は運河に おける水質の季節変化について,夏季及び冬季の現地観 測と水質分析に加え,数値計算により検討,考察を行い, 運河の水環境改善に寄与する手法の提案を目的とする.

## <u>2. 水質観測</u>

2-1. 定点観測,時間鉛直分布の観測の概要 特に汚濁が 激しいとされている運河の最奥部に位置する東支線西日 置橋にて冬季に定点観測、夏季及び冬季に時間鉛直分布 の観測を実施した. 観測地点を図-1 に、観測日程を表-1 に示す. 定点観測は, 2014年12月8日から12月22日の 2週間にかけて多項目水質計(東亜 DKK 製 WQC-24)を 表層(水面から0.5m),中層(水面から1.5m),底層(水 底から0.5m)に設置し、5分毎にpH,溶存酸素濃度(DO). 塩分,水温,クロロフィルa(中層, Chl.a), 濁度,酸化 還元電位(底層, ORP)を測定した.時間鉛直分布の観 測は, 2014年1月9日6:00~24:00 (冬季), 5月15日6:00 ~24:00 (春季), 8月1日6:00~24:00 (夏季)の18時間, 計3回実施した. 多項目水質計を用いて, 30分毎に水面 から 0.5m 間隔で鉛直方向に pH, DO, 塩分, 水温, Chl.a を計測した. 西日置橋の水深は約3m (N.P.0.2m) である. 2-2. 移動観測の概要 移動観測は、2015年8月5日(夏 季)と12月1日(冬季)に多項目水質計を使用し、図ー

学)と12月1日(冬学)に多項日本貢訂を使用し、図ー 1に示す9か所の橋を観測対象とし、いろは橋(St.1)か

| 観測形態      | 観測日              | 観測時間             | 観測地点 |
|-----------|------------------|------------------|------|
| 定点観測      | 2014.12.08~12.22 | 2週間              | 西日置橋 |
| 時間鉛直分布の観測 | 2014.01.09       | 6:00~24:00(18時間) | 西日置橋 |
| 時間鉛直分布の観測 | 2014.05.15       | 6:00~24:00(18時間) | 西日置橋 |
| 時間鉛直分布の観測 | 2014.08.01       | 6:00~24:00(18時間) | 西日置橋 |
| 移動観測      | 2015.08.05       | 10:00~21:00      | 図-1  |
| 移動観測      | 2015.12.01       | 10:00~17:30      | 図-1  |

表-1 観測日程

## 森下 真那人



表層 DO 濃度に追従する時間変化特性を示す. 底層(水 底から0.5m)のDO濃度は、恒常的に底質による酸素消 費を伴い 2mg/L 以下の貧酸素である場合が多いが, 12 月 17日の12時頃から18日にかけて、底層のDO濃度が急 上昇し、表層及び中層の DO 濃度とほぼ一致しているこ とが認められる. この原因として, 12月16日の降雨によ る未処理水(淡水)の流入で、DO濃度は一時的に低下す るものの, その後内部攪乱に伴う鉛直混合が促進され, 表層と底層の水温差が減少し、循環により水温成層が解 消されたことが挙げられる.加えて、未処理水が含有す る豊富な栄養塩を利用した植物プランクトンの生産活動 により、一時的に全層にわたり DO が高まったことが考 えられる. また 12月 17日の午後にかけて, Chl.a 濃度が 200µg/Lを超える急上昇を示したことから,この時間帯に 植物プランクトンの生産活動が促進されたことが示唆さ れ, DO 濃度上昇を裏づける結果となった.



## 3-2. 時間鉛直分布から見た季節変化及び時間変化特性

図-3 (a) ~ (f) に 2014 年 8 月 1 日 (夏季) 及び 2014 年1月9日(冬季)の東支線西日置橋におけるDO,水温, Chl.aの時間鉛直変化を示す.計測時間は夏季・冬季とも に6時~24時の18時間である.図-3(a)に示す8月(夏 季)の DO 濃度は、底質による酸素消費に伴い、中層以 深で貧酸素水塊が広がっていることが認められる. それ に対し、図-3(b)に示す1月(冬季)のDO濃度は、全 層にわたり高濃度で行き渡っていた. 図-3(c) に示す8 月(夏季)の水温は、日射により表層水温が上昇し、底 層と 2~3℃の水温差が生じる水温成層が形成されている ことがわかる. 図-3 (d) に示す1月(冬季)の水温は、 表層と底層における水温差が減少し、水温成層が解消さ れており,前述の定点観測にて水温成層が未解消だった という結果とは異なる. 図-3 (e) に示す8月(夏季)の Chl.a 濃度は表層では40µg/L 程度で,底層では60~80µg/L と表層より底層で高濃度となった. これは強い日射の影 響で、植物プランクトンが強光阻害を起こしたと考えら れる. 図-3 (f) に示す1月(冬季)の Chl.a は水温成層 が破壊されたことで、栄養塩が空間的に行き渡ることが 考えられる. その結果, 植物プランクトンの増殖を促進 し、冬季の DO 濃度を高めたものと推察される. 塩分は 冬季の表層で若干の低下が確認されたが、夏季・冬季と もにほぼ一様であり、成層は形成されていなかった. 3-3. 移動観測結果から見た季節変化及び空間変化特性

図-4 (a) ~ (f) に 2015 年 8 月 5 日 (夏季) と 12 月 1 日(冬季)に DO,水温, Chl.a の縦断方向の鉛直変化を 示す. 図-4 (a) ~ (b) に示す夏季及び冬季における DO についてみると、夏季の DO は、時間鉛直分布と同様の 傾向であった. 冬季の DO は, 夏季の DO に比べ, 貧酸 素水塊の層が下に押し下げられ、表層から中層は夏季よ りも相対的に高いことがわかる. 図-4 (c) に示す夏季の 水温は、表層が高く、底層が低い夏季の水温成層の形成 が認められる.反対に、図-4 (d) に示す冬季の水温は、 気温低下により表層水温が下がり、底層が高くなる冬季 の水温成層が確認される.水温と DO との関連は、夏季 は正の関係(R=0.800)であり,冬季は負の関係(R=-0.896) であった. DO は水温成層によらず,常時,表層が高く底 層が低い鉛直分布を形成していることがわかるが、水温 成層との関係性は明白ではない. 図-4(e) ~ (f) に示 す夏季及び冬季における Chl.a の結果について、夏季の Chl.aは強い日射により植物プランクトンが強光阻害を起 こしたと考えられ、低い値に留まっている.しかし、冬 季の Chl.a は特徴的で,赤潮が確認された 4km 地点では, 200µg/Lの高いChl.a 濃度を示し、異常増殖した植物プラ ンクトンが冬季の DO 濃度に大きな影響を与えているこ とが明らかとなった. 塩分は夏季に 5PSU 程度の塩分成 層の形成が確認されたが、冬季は名古屋港からの高塩分 水塊の流入が見られ、弱い成層を形成している.



4. 水質分析 2015 年 8 月 5 日 (夏季) と 12 月 1 日 (冬季) に図-1 に示した 5 地点 (St.1~St.5) で採水と底質の採取 を実施した. 採水深度は, 表層 (水面から 0.5m), 中層 (水 面から 1.5m),底層(水底から 0.5m)で,水深毎に 3 サ ンプル(各地点で9サンプル).採泥は各地点で3サンプ ル採取した.なお、冬季の底質の採取は採泥器の故障の ため, St.4 及び St.5 の底質採取が実施できなかった. 採 水サンプルについては全窒素 (T-N), 硝酸態窒素 (NO<sub>7</sub>-N), 亜硝酸態窒素 (NO<sub>2</sub>-N), アンモニウム態窒素 (NH<sub>4</sub>-N), 全リン (T-P), リン酸態リン (PO<sub>4</sub>-P), 浮遊物質量 (SS), 化学的酸素要求量(COD<sub>Mn</sub>)について分析を行った.底 質サンプルについては全窒素(T-N),全リン(T-P),強 熱減量(I-L)について分析を行った.表-2に測定項目及 び測定法について示す. 図-5(a)~(h)に水質分析結 果を示し、図-6(a)~(c)に底質分析結果を示す.図 -5 (a) 及び図-5 (d) について, 夏季は底層において有 機物の嫌気的分解により NH4-N 及び PO4-P が生成され, 両者の分布特性は非常に類似し、強い正の相関が認めら れた(R=0.99). これより, 夏季は嫌気性に伴う底質から の無機態窒素及リンの溶出が顕著であることが明らかと なった. 図-5 (b) に示す NO<sub>2</sub>-N は, 冬季の濃度が夏季 に対して全計測点で上回る結果となった. これは、冬季 の底層が酸化状態であり、 NH4-N から NO2-N へ硝化が 進行したことが考えられる.反対に夏季は嫌気下である ため, 有機物の酸化分解が NH4-N の発生で止まり, NO2-N 濃度は上昇していないことがわかる.図-5(c)について, 夏季の NO<sub>3</sub>-N のオーダーは冬季と比較し、大きい結果と なった.この理由として、夏季は水温の上昇とともに硝 化速度も大きくなるため,硝化が NO<sub>3</sub>-N まで進行したこ とが考えられる.次に図-5(e)及び図-5(f)に T-N及 び T-P の結果を示す. T-N は, 夏季の底層で高く, St.3~ St.5 では 6mg/L を超える濃度となっているが、それ以外 はある程度類似した空間特性を示した. T-P は, PO<sub>4</sub>-Pの 分布傾向との類似性が認められ、夏季の St.3~St.5 の底層 で高い濃度を示した.環境基準値(湖沼)である T-N: 1.0mg/L, T-P: 0.1mg/L を上回っており, 富栄養化が深刻 であることが示された. 図-5 (g) に示す SS は, 夏季に おける St.3~St.5 で高濃度となり, NH4-N 及び PO4-P と強 い正の相関(R=0.97)を示した. これは, SS の主成分で ある懸濁態有機物などが分解され、NH4-N 及び PO4-P が 生成されたことを示唆する. 図-5(h) に示す COD<sub>Mn</sub>は, 夏季において底層が高く, St.5 では40mg/Lの高濃度を示 した. また, COD<sub>Mn</sub> 濃度は, 環境基準(湖沼) である COD<sub>Mn</sub>:8mg/Lを超えている場合が多く,SSの結果と合わ せて、内部生産による有機汚濁が進行していることが示 唆された.次に、図−6(a)~(c)の底質の分析結果に ついて、夏季の上流側において T-N, T-P ともに高い値を 示した. これは底層の嫌気化が進行し,底泥からの間隙 水への溶出が増加したものと推察される.また, St.1 い



ろは橋での TN の上昇や, St.2 昭和橋, St.3 長良橋の冬季の T-N が夏季より高いこと, St.3 長良橋において冬季 の T-P 濃度の上昇が確認された. これらは冬季の好気性 による底質への吸着や,好気性・嫌気性の状態が繰り返 された結果,底質の表層で濃度が高まった場合が考えら れるが,更なる継続的な調査が必要である.強熱減量は, 夏季の St.5 では 35%であり,東支線は依然として有機汚 濁が深刻であることが示された. 冬季は顕著な変化はな く,季節による底質の有機物量の変化は小さく,常に有機物の堆積が進んでいることが考えられる.

5. 数値計算 現地観測データとの再現性を確認するため, 鉛直2次元モデルである CE-QUAL-W2 を用い, 数値計算 を行った.また,表-3に示したケースで数値シミュレー ションを行い、導水量や導水時間の変化及び覆砂の実施 が水質の季節変化に与える影響について検討を行った. 5-1. 再現計算結果及び考察 図-7~図-8に,西日置橋に おける夏季及び冬季の鉛直分布の再現計算結果を示す. 水温は、冬季において計算値が成層化し、観測値と分布 が異なったが、夏季における計算値は日射による影響を 若干捉えていることがわかる. 塩分は値に多少ずれはあ るものの, 傾向を捉えることができている. DOは, 夏季 の底層の貧酸素化や冬季の貧酸素水塊の解消などの変化 特性を表現できている.図-9(a)~(d)に東海橋の表 層及び底層における1年間の再現計算結果を示す.表層 塩分の計算値は、観測値より低い値で追従しているが、 底層塩分は良好な一致を見せている.水温は、計算値の 変動が大きいものの、季節変化の妥当な再現性が得られ ている. DO は細かい日変動は追従していないが,季節特 性は概ね表現できており,再現計算の妥当性が示された. 5-2. 数値シミュレーション結果及び考察 図-10 及び図 -11 に case1 の 8 月 1 日, 12 月 1 日 12 時の (a) 全線覆砂 あり(b) 覆砂なしの場合の DO の計算結果を示す. なお, 覆砂は底質の酸素要求量(SOD)がゼロとして表現した. 図-10 について, case1-a では 6000m 以降で貧酸素である が, 覆砂を実施した case1-b では, 東支線における貧酸素 が解消しており、夏季において、一定の効果が出ている ことが示される. 図-11 について, case1-b では, 4000m 付近から DO 濃度の上昇が見られ、底層において 5mg/L 以上であり、底質の改善が認められる. また、紙面の都 合上記載していないが, 導水量が 14 万 m<sup>3</sup> である case2 は、DOにそれほど影響を与えなかったが、導水量7万 m<sup>3</sup>で, 流入時間が case0 より 2 時間短い case1 が水質改善 に効果があり、導水量以上に、導水時間が DO に影響し ていることが明らかとなった. DO の年平均値を覆砂実施 の有無で比較すると,西日置橋の表層で1.24倍(5.98mg/L →7.41mg/L),底層で1.61倍(3.72mg/L→5.97mg/L)と改 善した.現況と同様の7万m<sup>3</sup>を3時間で導水し,覆砂を 実施した case 1-b において最も DO の改善が見られた. 6. まとめ 本研究では、夏季における底質環境の悪化に 伴う貧酸素化や冬季における水温成層の解消に起因する 一時的な DO 改善を明らかにした. また底質の有機物の 堆積や栄養塩の溶出が水域の内部生産を助長しており, 特に東支線の汚濁が顕著であった.数値計算では季節変 化の再現を試み、数値シミュレーションにて導水時間の 変化と覆砂の実施が水環境改善に寄与する可能性を示し た、今後は、底質環境の継続的な調査と数値計算の精度 向上が必要と思われる.

参考文献:森下真那人,中川運河における水質の鉛直構造に関 する研究,名古屋工業大学卒業論文,2013



| ケース名         | 導水量 (m <sup>3</sup> /day) | 導水量 (m <sup>3</sup> /sec) | 覆砂 (SOD=0) |  |
|--------------|---------------------------|---------------------------|------------|--|
| Case0-a (現況) | 70000                     | 3.858 (10時~15時の5時間)       | なし         |  |
| Case0-b      | 70000                     | 3.858 (10時~15時の5時間)       | あり         |  |
| Case1-a      | 70000                     | 6.752(10時~13時の3時間)        | なし         |  |
| Case1-b      | 70000                     | 6.752(10時~13時の3時間)        | あり         |  |
| Case2-a      | 140000                    | 7.716(10時~15時の5時間)        | なし         |  |
| Case2-b      | 140000                    | 7 716 (10時~15時の5時間)       | あり         |  |



(a) case1-a DO 覆砂なし 図-10



(a) case1-a DO 覆砂なし 図-11 2014年12月1日(冬季) 12:00 導水量 6.752(m³/sec)



(b) case1-b D0 覆砂あり 2014年8月1日(夏季) 12:00 導水量6.752 (m<sup>3</sup>/sec)



(b) case1-b DO 覆砂あり